
REST- Representational State

Transfer
Enn ìunapuu

enn.ounapuu@ttu.ee

mailto:enn.ounapuu@cc.ttu.ee

Mªªrang

Â Representational State Transfer (REST) is a

style of software architecture for distributed

hypermedia systems such as the World Wide

Web. The terms ñRepresentational State Transferò

and ñRESTò were introduced in 2000 in the

doctoral dissertation of Roy Fielding,[1] one of the

principal authors of the Hypertext Transfer

Protocol (HTTP) specification. The terms have

since come into widespread use in the networking

community.

http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Hypermedia
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/2000
http://en.wikipedia.org/wiki/Roy_Fielding
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Prinsiibid
RESTôs proponents argue that the Web enjoyed the scalability and

growth that it has had as a direct result of a few key design

principles:

Â Application state and functionality are divided into resources

Â Every resource is uniquely addressable using a universal syntax for

use in hypermedia links

Â All resources share a uniform interface for the transfer of state

between client and resource, consisting of

Â A constrained set of well-defined operations

Â A constrained set of content types, optionally supporting code on

demand

A protocol that is:

Â Client-server

Â Stateless

Â Cacheable

Â Layered

REST's central principle: resources

An important concept in REST is the existence

of resources (sources of specific information),

each of which can be referred to using a

global identifier (a URI). In order to manipulate

these resources, components of the network

(clients and servers) communicate via a

standardized interface (e.g. HTTP) and

exchange representations of these resources

(the actual documents conveying the

information).

http://en.wikipedia.org/wiki/Resource_%28Web%29
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Eelised
Â Provides improved response times and server loading characteristics due to support

for caching

Â Improves server scalability by reducing the need to maintain communication state.

This means that different servers can be used to handle initial and subsequent

requests

Â Requires less client-side software to be written than other approaches, because a

single browser can access any application and any resource

Â Depends less on vendor software than mechanisms that layer additional messaging

frameworks on top of HTTP

Â Provides equivalent functionality when compared to alternative approaches to

communication

Â Does not require a separate resource discovery mechanism, due to the use of

hyperlinks in content

Â Provides better long-term compatibility and evolvability characteristics than RPC. This

is due to:

Å The capability of document types such as HTML to evolve without breaking

backwards- or forwards-compatibility, and

Å The ability of resources to add support for new content types as they are defined

without dropping or reducing support for older content types.

http://en.wikipedia.org/wiki/Web_cache

Comparison of SOAP and Rest

Â RESTandSoapcomparison.doc

RESTandSoapcomparison.doc

HTTP

HTTP CRUD

POST Create, Update, Delete

GET Read

PUT Create, Update

DELETE Delete

HTTP post and get comparison

The fundamental differences between "GET" and "POST"

The HTML specifications technically define the difference between

"GET" and "POST" so that former means that form data is to be

encoded (by a browser) into a URL while the latter means that the

form data is to appear within a message body.

As a simplification, we might say that "GET" is basically for just

getting (retrieving) data whereas "POST" may involve anything,

like storing or updating data, or ordering a product, or sending E-

mail.

http://www.cs.tut.fi/~jkorpela/rfc/2396/toc.html

Yahoo

The Yahoo! Search Web Services are all REST

services. That means you can easily construct

request URLs that will work in your browser, on

the command line, and in your code. For our

example, we'll construct a query to search the

web for PDF files containing the term "finances".

See the web search documentation to

understand the details of this service.

http://search.yahooapis.com/WebSearchService/V

1/webSearch?appid=YahooDemo&query=finan

ces&format=pdf

