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Finite State Machines (McCullock/Pitts 1943)

– The FSM Model of Computation 
• finitely many internal states: externally invisible 

“control” states representing a bounded memory 
• external input: elements from a finite set
• dynamic behavior: reaction to input consumed by 

– updating internal state                         (δ-function Nxtctl)
– providing externally visible output (λ-function Nxtout)

MealyFsm (in, out, Nxtctl, Nxtout ) =  

control := Nxtctl(control,in)
out := Nxtout(control,in)
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Extend FSMs to VMs by general notion of data/data change

memory: set of abstract updatable locations l(a1,…,an)
• containing values of whatever type: objs, sets, fcts,…
• updatable via assignments loc:= val (updates) 

grouping of data (“modular memory structure”)
• into tables: association of a value to each entry l(a1,…,an)

– also called interpretation of an array (function or predicate) 

• into states: sets of tables
– also called (Tarski) structure of given signature

state change by updating some locations
• i.e. using guarded updates via transition rules of form  

If cond then Updates
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Abstract State Machines (mathematical VMs)

• state an arbitrary structure (Tarski )
• state transformation by simultaneous execution of 

finitely many rules of form
– array updates f(s,…):=t               (function updates)
– if cond then rule                             (guarding)
– choose x with P(x) in rule       (non-determinism)
– forall x with P(x) do rule                   (parallelism)
– let x=t in rule           (common notational shorthands)

i

cond1

condn

…

rule1

rulen

j1

jn

control state ASM with rules
if control=i and cond 
then control:=j

rule
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Example: Control State FSM/ASM for Lift

halting moving
L.floor:=L.floor +/-1

L.attracted(L.dir)

not L.canContinue (L.dir)

L.cancelRequest
(L.floor,L.dir)

DEPART

C
H
A
N
G
E

C
O
N
T
I
N
U
E

STOP

L.dir:=L.dir’
L.cancelRequest

(L.floor,L.dir’)

not L.attracted (L.dir) 
& L.attracted (L.dir’) L.canContinue (L.dir)

L.floor:=L.floor +/-1

See AsmBook 2.3

agent L = self
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What are ASMs good for?

Basis for rigorous system development method 
which allows one to effectively 

couple specification & detailed design 
• by constructing  

– accurate ground models (blueprints) at the 
appropriate level of rigour             (LNCS 452 & 2772) 

– linked seamlessly to executable code via 
systematic stepwise refinement of models

(LNCS 452 & J.FAC 2003)

• in a way the practitioner can verify & validate 
by reasoning & experimentation at the appropriate 
degree of detail
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ASMs support major activities in sw lifecycle (1)

• requirements capture by constructing satisfactory 
ground models, i.e. accurate high-level system 
blueprints, serving as precise contract and 
formulated in a language which is understood by all 
stakeholders 

• detailed design by stepwise refinement, bridging 
the gap between specification and code design by 
piecemeal, systematically documented detailing of 
abstract models down to executable code, 
modularizing orthogonal design decisions (“design 
for change”)



© Egon Börger: ASM Method 8

ASMs support major activities in sw lifecycle (2)

– validation of models by their simulation
• based upon the mathematical notion of ASM run, which is 

supported by numerous tools to execute ASMs: 
– ASM Workbench (ML-based, DelCastillo 2000) 
– AsmGofer (Gofer-based, Schmid 1999)
– XASM (C-based, Anlauff 2001)
– AsmL (.NET-based, MSR/FSE 2001)

– verification of model properties by techniques for 
proving or refuting (counterexample construction) 

• whether “by head” or tool supported
– e.g. by KIV, PVS, Isabelle, AsmPTP, model checkers

– documentation for inspection, reuse and maintenance 
• by providing, through analysis of ground and intermediate models, 

explicit descriptions of the software structure and of the major
design decisions



© Egon Börger: ASM Method 9

ASM Method: Seamlessly from Specs via Design to Code



© Egon Börger: ASM Method 10

Major applications of ASMs 

– industrial standards: OASIS BPEL4WS, ECMA/ISO C#, ITU-T SDL-2000, 
IEEE VHDL93, ISO Prolog

– programmming languages: all major real-life languages, e.g. SystemC, 
Java/JVM bytecode, domain-specific languages (at Swiss Union Bank) 

– architectural design: verification, e.g. of pipelining & VHDL-based hw 
design (Schmid at Siemens), architecture/compiler co-exploration 
(Teich Paderborn/Erlangen)

– reengineering and design of industrial control systems: Falko project & 
mobile telephony network components (Siemens), debugger 
specification & UPnP (Microsoft)

– protocols: authentication, cryptography, cache-coherence, routing-
layers for distributed mobile ad hoc networks, group-membership 

– compilation: verification of comp.schemes/compiler back-ends
– modeling e-commerce and web services
– simulation & testing: fire detection system in coal mines, simulation of 

railway scenarios (Siemens), implementation of behavioral interface 
specs on .NET platform & conformence test of COM components 
(Microsoft), compiler testing
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ASM Method: Separation of Different Concerns
• Separating orthogonal design decisions

– supported by combining abstract operational 
descriptions of system dynamics with declarative 
(e.g. functional or axiomatic) definitions of statics

• to keep design space open (specify for change: avoiding 
premature design decisions & documenting design decisions to 
enhance maintenance)

• to structure design space (rigorous interfaces for system 
(de)composition, laying the ground for the system architecture)

• Separating design from analysis    (defn from proof)

– validation (by simulation) from verification (by reasoning)

– verification levels (degrees of detail)
– reasoning for human inspection (design justification)
– rule based reasoning systems

» interactive systems
» automatic tools: model checkers, automatic thm provers

• Linking system levels by abstraction and refinement

See E.B. in 
FDL2003
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ASM method: 3 constituents 

• notion of ASM    
– Y.Gurevich 1984-1995, in particular “Lipari Guide” 1995   

• ground model technique
– See E.Börger: The ASM ground model method as a foundation of

requirements engineering, LNCS 2772 (2003) 145-160. See also 
LNCS 452 

• ASM refinement technique
– See E.Börger: The ASM refinement method, Formal Aspects of 

Computing 15 (2003) 237-257. See also LNCS 452
• to be combined with appropriate methods of

– ASM validation
– ASM verification



© Egon Börger: ASM Method 13

ASM notion: rigorous semantics 
for truly abstract (pseudo-) “code”

• Semantics of guarded function updates:
if cond then … f (t1,…,tn):=t …

• In the current state (structure) S:
– determine all the fireable rules (s.t. cond is true in S)

– compute all update expressions ti,t
– execute simultaneously all the assignments

• The updating yields the next state S’

For a formalization by deduction rules see AsmBook 
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Semantics of ASM (cont’d): choose/forall rules

• Semantics of     choose x satisfying cond 
R

in the current state S:
– select an element e which satisfies cond in S 

– execute R(e) in S to yield next state S’

• Semantics of forall x satisfying cond
R

in the current state S, execute simultaneously R(e)             
for each e satisfying cond in S to yield next state S’
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Componentization via Classification of Locs/Fcts

• Static: values independent on states of M
• Dynamic: values depend on states of M

– in (monitored) : only read (not updated) by M, 
written only by environment of M Exl: sensors

– out: only written (not read) by M, only read (not 
written) by environment                     Exl: actuators

– controlled: read and written by M
– shared: read and written by M and by environment  

(protocol needed for consistency of updates)

• Derived: values computed by a fixed scheme 
from monitored/static fcts
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What ground models provide for requirements

code

design
3. Makes requirements traceable 

by relating them to design

Informal
requirems

Ground
Model

1.

1. Requirements capture
documenting relevant application 
domain knowledge for designer

2.2. Requirements inspection makes 
correct/completeness checkable for 
user/customer (no infinite regress)

• Verification of properties
• Validation: mental/machine simulation 

(of user scenarios or components) 
supported  by operational nature of model

4. Provides test plan basis
testing

See E.B. LNCS 2772
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Main purpose of FALKO: Construct & validate timetables for 

tram/sub-/railway lines         (system of 300 K loc)

• Timetables constructed offline from raw data which

– can be input manually via a GUI 

– can be read in from files written in established formats

• Validation done by simulation

– 3 main components + 1 hidden discrete event simulation 
kernel controlling the simulation

• Defective component implementing the railway process

reengineered using ASMs (modeled and designed)

– integrating an existing library for numerical computations 
(computing train velocities, trip times etc.) designed and 
hand coded conventionally

Ground Model Exl: Falko Project (Siemens 3‘98-5’99)

Slides courtesy of Peter Päppinghaus
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Total Effort for Railway Process Model: 66 pw (person weeks)

• Ground Model Construction (High-Level Design)
– Requirement eliciation and specification based on predecessor system, developed in meetings of the design 

team, documented by minutes of the meetings (4 persons 2 weeks)
– Design of 1st draft of executable ASM model (1 person 8 weeks)
– Several cycles of testing and debugging using the ASM Workbench (developed by Giuseppe Del Castillo as 

part of his Doctoral Thesis at University of Paderborn)  (1 person 8 weeks + 1 person 11 weeks)
– Review of 2nd draft of ASM model by design team plus external reviewers (6 persons 1 week)
– Several cycles of improving, testing and debugging (2 persons 5 weeks)

• Implementation 
– Development of ASM-SL to C++ Code Generator (developed by Joachim Schmid as part of his Doctoral 

Thesis at University of Ulm, 1 person 4 weeks)
– Specification and implementation of additional handwritten C++ code (1 person 2 weeks)
– Integration of FALKO system including testing and debugging (3 persons 3 weeks)
– Documentation of railway process model component (as collection of HTML documents with literate 

programming features, linked to ASM Workbench) and final polish (1 person 6 weeks)

Comparison: ca. 110% of estimated total effort for conventional software design

The FALKO Project: ASM Effort 
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ASM Ground Model (source of C++ code generation)

• ca. 3 000 lines of ASM Workbench code

• 120 rules

• 315 functions and relations (240 functions, 75 relations)
– 71 dynamic

– 69 external

– 59 static

– 116 derived

C++ Code
• ca. 9 000 lines of generated C++ Code

• ca. 2 900 additional lines of handwritten C++ Code, consisting of
–ca. 400 lines wrapper code for interfacing to other components of FALKO

–ca. 2 500 lines low-level library code

• Railway process model of prototypical predecessor system: 

ca. 20 000 lines of  (handwritten) C++ code

Size of ASM Ground Model and C++ Code for Railway Process Model
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• Ground Model Construction (High-Level Design)

– Developers and reviewers had no problems to understand the formal specification (ASM model)

– Tests with ASM model uncovered, at an early stage, bugs also in other components of the package

• Implementation

– Coherence of specification and implementation by seamless tool support

– Performance loss of generated code tolerable even for product quality code

• Maintenance

– 4 installations at Subway Vienna Operator since March 1999, 1 in daily use

– Customer reported no bugs so far

– 2 bugs discovered in tests run by FALKO developers, temporary fixes for the 2 bugs (by handhacking the 

generated C++ code) later replaced by recompiling updated ASM model

• Development Environment built-up, supporting seamless flow from spec to code

Falko Experience in Use of ASMs for Software Design
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• Egon Börger, Peter Päppinghaus, Joachim Schmid: Report on a 
Practical Application of ASMs in Software Design

• In: Y. Gurevich et al.( Eds.): Abstract State Machines. Theory and Applications. 

Springer LNCS 1912, 2002, 361-366

• Giuseppe Del Castillo: The ASM Workbench. A Tool 
Environment for Computer-Aided Analysis and Validation of 
Abstract State Machine Models

• Dissertation, Heinz Nixdorf Institut, Universität Paderborn, 2001, pp.iv + 212,   

ISBN 3 - 9311 466 – 82 – 5

• J. Schmid: Compiling Abstract State Machines to C.

– In: Journal of Universal Computer Science 7 (11), 2001, 1069-1088

References to Falko Project
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Exl: High-Level Debugger Model (MS/MSR 2000)

Break Run

onBreakingCommand
onRunningCommand

onStoppingEvent

OnNonStoppingEvent

TryToBreak

onEmptyEventQueue

Init

onExit

onStart

onStart = if command == “dbg” then startdbg
onExit =  if command == “Exit” then stopdbg

where startdbg= stopdbg=skip 

Slide courtesy 
M. Barnett, M. Veanes
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Break Run

TryToBreakInit

Experimenting user scenarios with ASM model

start

Break

Init

b hello.cpp:13

Break

run hello.exe

Break
Created process
.
.
Loaded module
Created 1st thread

RunRunRunRunRunRun

False
TryToBreak

Break

TryToBreak continue

Break Run

Hit breakpoint

Run

TryToBreak

False

TryToBreak

Run

Loaded Class

Run

True

User Environment          Events in    
queue

Test of the Control Model showing an 
undesired behavior (which then 

was found to have been fixed at the 
same time also in the C++ code)

After non-stopping class loading event in 
Run mode, Break mode is unreachable

although breakpoint was reached 

Row t exhibits state after
t-th step of control model
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ASM model for debugger: revised

onNonEmptyEventQueue

RunQ
onAnyEvent

Break Run

onBreakingCommand
onRunningCommand

onStoppingEvent

OnNonStoppingEvent

TryToBreak

onEmptyEventQueue

Init

onExit

onStart

See Proc. ASM2000 in LNCS 1912
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Scheme for Correct ASM Refinement/Abstraction Step

State
τ1 …τm State’

≡

• relating the locations of interest
• in states of interest 
• reached by comp segments of interest

≡ defined

RefState RefState’
σ1 …σn

ref absabs ref

Supports design communication, reuse, system documentation and maintenance

See E.B. in Formal Aspects of Computing 2003



© Egon Börger: ASM Method 26

Defining correctness of a refinement M* of M

• Fix any notions ≡ of equivalence of states & of initial/final states
• Idea of correctness: refined runs simulate abstract ones

• Definition. M* is a correct refinement of M iff 
every (infinite) refined run simulates an (infinite)    
abstract run with equivalent corresponding states
– i.e. for each M*-run S*(0), S*(1),… there is an M-run 

S(0), S(1),… , either both terminating or both 
infinite, with infinite sequences i0< i1<…, j0< j1<…
such that S(ik) ≡ S*(jk) for each k, including the initial 
states (i0 = j0 =0)  and the final ones (if any) 

• Wlog at final states, the state sequence becomes constant            
i.e. S(r) = S(r+k) for each final S(r) and each k, same for S*
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Completeness condition for ASM refinements

• Completeness idea: abstract runs are simulated by 
(correspond to) refined ones, symmetrically to how for 
correctness refined runs simulate abstract ones 

• Def. M* is a complete refinement of M  
iff M is a correct refinement of M*

• Related concepts/terminology:
– “preservation of partial correctness” for correct refinement (wrt

terminating runs)
– “preservation of total correctness” for complete refinement (adding to 

the correctness condition for terminating runs that every infinite refined 
run admits an infinite abstract run with an equivalent initial state)

– “bisimulation” or “interpreter equivalence” for correct and complete 
refinement (wrt terminating runs considering only the input/output 
behavior)
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FETCH

Operand

Fetch

Mem
Addr

Jump
Branch

AluJumps IAR
I2S

IAR
S2I

OPERAND

Alu
Set

IAR
S2I

Load
Store

IAR
I2S

WRITEBACK

ALU

Write
Back

C←←←←IAR

IF

ID

EX

MEM

WB

Pipelining Stages DLXseq

IAR←←←←A

Jump
LinkTrapBranch

JUMP
LINK

Link C←←←←PC

BRANCH TRAP

no

Store

STORE

LOADSubwordSUB
WORD

yes

Store

MEMADDR

MDR←←←←B

PassBtoMDR

Mem
Acc

no
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FETCH

WRITEBACK

IF

ID

EX

MEM

WB

Pipelining Stages DLXpar Rules

ALU MOVI2SMEMADDR PassBtoMDR

JUMP
LINK

LINKBRANCH TRAP Preserve1

MOVS2I

OPERAND Preserve

STORELOAD Preserve2

• The problem: how to 
guarantee that no 
conflicts arise when 
an instruction exec 
uses data which have 
to be computed by a 
preceding instruction 
whose pipelined 
execution is not yet 
terminated

• Ideally all rules fire 
simultaneously 
• one per instruction in its 

successive stages

Verified stepwise refinement see LNCS 1212
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To-be-Refined Debugger Model

onNonEmptyEventQueue

RunQ
onAnyEvent

Break Run

onBreakingCommand
onRunningCommand

onStoppingEvent

OnNonStoppingEvent

TryToBreak

onEmptyEventQueue

Init

onExit

onStart
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debugger

Init

initializeCOM

Sequential submachine refinement of machine onStart
into a sequence of three submachines

createNewShell

Break

setDbgCallback

env

���

Process=Null
Thread =Null
Frame  =Null

…
BPs    ={}

Shell

dbg services

callbacks

Break

initializeCOM createNewShell setDbgCallback

Submachine Concept: Proc. ASM2000 in LNCS 1862
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More Exls for Design & Verification of ASM Hierarchies
Control Systems: Production Cell (model checked, refinement to C++ 
code:JUCS 1997), Steam Boiler (refinement to C++ code, LNCS 1165),  Light 
Control (executable requirements model, JUCS 2000)

Compiler correctness
ISO Prolog to WAM: 12 refinement steps, KIV verified

reflecting backtracking, structure of predicates, structure of clauses, 
structure of terms & substitution, optimizations. 

reused for PROTOS-L (poly types) and CLP (R) (constraints) (FAC ‘96) 
Occam to Transputer :15 models (Computer Journal ‘96)

exhibiting channels, sequentialization of parallel procedures, pgm ctrl 
structure, env, transputer datapath and  workspace, relocatable code 
(relative instr addresses & resolving labels)

Java to JVM: language and security driven decomposition     (Jbook)
horizontal sublanguage levels (reused for C# )

imperative, modules, oo, exceptions, concurrency (delegates, unsafe)   
vertical JVM levels (modular compositional structuring)

trustful execution, defensive run time checks, diligent link time checks,   
loading
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Looking for invariants to prove ASM refinement correctness 

• Idea: find commuting diagrams with end points s, s*

which satisfy an invariant ≈ implying the to be 
established equivalence ≡

• Realization: for each pair of corresponding states -
not both final - satisfying ≈, follow the two runs to find 
a successor pair s’, s*’ (of corresponding states 
satisfying ≈)

• Two cases are possible for such run extensions:
– only one of the two runs can be extended

• the abstract one, producing an (m,0)-diagram
• the refined one, producing a (0,n)-diagram

– both runs can be extended
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Extending runs by triangles and trapezoids 

s’. . .

s*’. . . 

s*’. . .

s’. . .

≈

s

s*

≈(m,0)-triangle: compute segment 
leading in m>0 steps to an s’≈s*

s

s*

≈(0,n)-triangle: compute segment 
leading in n>0 steps to an s*’≈s

s

s*

≈

(m,n)-trapezoid:
compute segment leading 

in m>0 steps to an s’
in n>0 steps to an s*’

such that s’≈s*’
where m>n or m=n or m<n
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Definition of the forward simulation condition FSC(s,s*)

If s ≈ s* and not both s,s* are final states, then
• either the abstract run can be extended

by an (m,0)-triangle
leading in m>0 steps to an s’≈s* with (s’,s*) <m0 (s,s*)

• or the refined run can be extended
by a (0,n)-triangle
leading in n>0 steps to an s*’≈s with (s,s*’) <0n (s,s*)

• or both runs can be extended
by an (m,n)-trapezoid leading 

in m>0 abstract steps to an s’

in n>0 refined steps to an s*’
such that s’≈s*’

NB. A minor modification covers also nondeterministic ASMs

applying triangles 
successively

must be well-founded
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Schellhorn’s coupling invariant for correct ASM refinements

Theorem. M* is a correct refinement of M 
wrt an equivalence notion ≡ and a notion of initial/final states

if there is a relation ≈ such that
• the coupling invariant ≈ implies equivalence  ≡
• each refined initial state s* is coupled by the 

invariant to an abstract initial state s≈s*
• the forward simulation condition FSC holds for 

every pair (s,s*) of abstract and refined states

This theorem constitutes the basis of: 
G. Schellhorn, W. Ahrendt: The WAM Case Study: Verifying Compiler Correctness for 

Prolog with KIV. In W.Bibel, P. Schmitt (Eds): Automated Deduction – A Basis for 
Applications. Vol.3, Ch.3, Kluwer 1998

G. Schellhorn, W. Ahrendt: Reasoning About Abstract State Machines: The WAM 
Case Study. JUCS 3 (4) 1997, 377-413 
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Illustrating ASM Ground Model Construction 

and Provably Correct Refinements
for asynchronous ASMs

Leader Election: a distributed network algorithm
See AsmBook Ch.6.1.5.  (Springer-Verlag 2003)

Compare with Petri net formalization in
W.Reisig: Elements of Distributed Algorithms

Sect. 32 (Fig.32.1/2), 76 (Springer-Verlag 1998) 
Compare with event-B development in:

J.-R.Abrial, D. Cansell, D. Mery: A mechanically proved and    
incremental development of IEEE 1394 tree identify    
protocol. Formal Aspects of Computing 14 (2003) 215-227
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Defining Asynchronous Multi-Agent ASMs
• An async ASM is a family of pairs (a, ASM(a)) of 

– agents a ∈ Agent (a possibly dynamic set)
– basic ASMs ASM (a)

• A run of an async ASM is a partially ordered set (M, < ) of 
“moves” m of its agents s.t.:
– finite history: each move has only finitely many 

predecessors, i.e. {m’ | m’ < m } is finite for each m∈M
– sequentiality of agents: for each agent a ∈ Agent, his

moves  {m | m∈M, a performs m} are linearly ordered by <
– coherence: each (finite) initial segment X of  (M, < ) has an 

associated state σ (X) – think of it as the result of all moves 
in X with m executed before m’ if m<m’– which for every 
maximal element m∈X is the result of applying move m in 
state  σ(X-{m}) 
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Leader Election: problem statement

• Goal: Design a distributed algorithm  for the election 
of a leader in finite connected networks of 
homogeneous agents, using only communication 
(message passing) between neighbor nodes.

• Assumptions:
– network nodes (agents) are connected & linearly ordered
– leader = max (Agent) wrt the linear order <

• Algorithmic Idea: every agent 
– proposes to his neighbors his current leader candidate 
– checks the leader proposals received from his neighbors

• upon detecting a proposal which improves his leader candidate he
improves his candidate  for his next proposal

• Eventually cand=max(Agent) holds for all agents 
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Leader Election: Agent Signature

• Agent: set of nodes of a finite connected graph 
– < linear order of Agent (external function)

• leader = max (Agent) wrt the linear order <

• Each agent equipped with:
– neighb ⊆ Agent (external function)
– cand: Agent (controlled function)

– proposals ⊆ Agent                    (controlled function)
– ctl_state : {proposeToNeighbors, checkProposals}

• Initially ctl_state=proposeToNeighbors, cand=self, proposals = empty
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Leader Election ASM Ground Model

propose
To

Neighbors

check
Proposals

propose

proposals
improve

there are 
proposals

empty proposals

no 

improve by proposals
empty proposals

yes 

propose ≡≡≡≡ forall n∈self.neighb  insert cand to n.proposals

proposals improve ≡≡≡≡ max (proposals) > cand

improve by proposals ≡≡≡≡ cand := max (proposals)
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Leader Election: Correctness property

• Proposition: In every distributed run of agents 
equipped with the leader election ASM, 
eventually for every agent holds:
– cand=max(Agent)
– ctl_state = checkProposals
– proposals = empty

• Proof (assuming that every enabled agent will 
eventually make a move): induction on runs 
and on Σ{leader - cand(n)| n ∈ Agent}
– measuring “distances” of candidates from leader
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Refining Leader Election: compute minimal path to leader

• Goal: refine the leader election algorithm to 
compute for each agent also a shortest path to the 
leader, providing
– a neighbor (except for leader) which is closest to the 

leader 
– the minimal distance to the leader

• Idea: enrich cand and proposals by a neighbor with 
minimal distance to the leader candidate
– nearNeighb: Agent
– distance: Distance    (e.g. = Nat ∪{∞})

– proposals ⊆ Agent x Agent x Distance

• Initially nearNeighbor = self         distance = ∞ (0 for leader)
NB. This is a typical example of a pure data refinement
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ASM Computing Minimal Path To Leader

propose
To

Neighbors

check
Proposalspropose 

proposals
improve

there are 
proposals

empty proposals

no 

improve by proposals
empty proposals

yes 

improve by proposals ≡≡≡≡
cand := Max (proposals)

update PathInfo to Max (proposals)

propose ≡≡≡≡ forall n ∈ neighb      insert (cand, nearNeighb, distance) to proposals(n)

proposals improve ≡≡≡≡ let m = Max (proposals) in m > cand 
or (m=cand and minDistance(proposalsFor m)+1 < distance)

Max taken
over agents

update PathInfo to m ≡≡≡≡
choose (n,d) with (m,n,d) ∈ proposals

d=minDistance(proposalsFor m) in
nearNeighb := n
distance := d+1
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Minimal Path Computation: Correctness

• Proposition: In every distributed run of agents 
equipped with the ASM computing a minimal path to 
the leader, eventually for every agent holds:
– cand=max(Agent)=leader
– distance=minimal distance of a path from agent to leader
– nearNeighbor = a neighbor of agent on a minimal path to 

the leader (except for leader where nearNeighbor=leader)
– ctl_state = checkProposals
– proposals = empty

• Proof (assuming that every enabled agent will 
eventually make a move): induction on runs and on 
Σ{leader - cand(n)| n ∈ Agent} with side induction on 
the minimal distances in proposalsFor 
Max(proposals)
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Exercises

• Refine the CHECK submachine of the leader 
election ASM by a machine which checks
proposals elementwise. Prove that the refinement 
is correct.
– Hint: See Reisig op.cit. Fig.32.1

• Adapt the ASM for the election of a maximal leader
and for computing a minimal path wrt a partial order 
≤ instead of a total order.

• Reuse the leader election ASM to define an 
algorithm which, given the leader, computes for 
each agent the distance (length of a shortest path) 
to the leader and a neighbor where to start a 
shortest path to the leader.
– Hint: See Reisig op.cit. Fig.32.2
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Event-B Models as ASMs: states, events, invariants
• States: structures of given signature with

– static part (“context”): 
• sets s (“universes”), constants c, properties(c,s) (“axioms”)

– dynamic part: variables v and env (viewed as another model) 
• “Inputting is done by non-determinacy”

– initialization (via a special event with guard true)
• Events of form If guard Then action

– guard: closed fst-order set theory formula with =
– action: one of the three forms

• Updates 
– read: simultaneous substitution v1,…,vn := e1,…,en (v) 

• skip
• choose x with P(x,v) in Updates

– where Updates  =  v1,…,vn := e1,…,en (x,v)

• Invariant: property holding in every state which is 
reachable from initial state
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Event-B Models as ASMs: rule normal form

• Normal form Rule1 or … or Rulen with Rulei of form 
– if cond then choose x with P(x) in Updates

• possible cases: P = true or Updates = ∅ (skip)

• NB. R or S  =  ( choose X∈{R,S} in X )
– no two events can occur simultaneously. Also distributed 

event-B models are based on this interleaving view.
– splitting into events implies some non-deterministic 

scheduling of events with overlapping guards
– no parallel update allowed for the same variable 
– no rules of form: forall x with P(x) do rule 
– external choose only on rules (interleaving model), no 

further nesting of choices allowed in Updates
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Event-B Models as ASMs: Refinement Notion

• only (1,n) refinements with n>0 satisfying:
– in a refinement F1,…, Fn,F of E, each Fi is supposed to refine SKIP
– the new events Fi do not diverge
– if the refinement deadlocks, then the abstraction deadlocks

• Variables in abstract & refined model are pairwise different
• no (1,0) refinement (“each abstract event must be refined by at 

least one refined event”)
• no (n,m) refinement with n≠1 

• observables = locations of interest (“projections of state 
variables”), here: variables which are
– fresh (for state vars and for invariants)
– modifiable only by “observer event” a:=A(v)
– dependent only on state variables v
– abstract observables A(v) can be “reconstructed” from refined ones by an 

equation A(v)=L(B(w)) (“invariant gluing the abstract observables to the 
refined ones”)
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