
The Abstract State Machines Method
for

High-Level System Design & Analysis

Egon Börger

Dipartimento di Informatica, Universita di Pisa

http://www.di.unipi.it/~boerger

© Egon Börger: ASM Method 2

Finite State Machines (McCullock/Pitts 1943)

– The FSM Model of Computation
• finitely many internal states: externally invisible

“control” states representing a bounded memory
• external input: elements from a finite set
• dynamic behavior: reaction to input consumed by

– updating internal state (δ-function Nxtctl)
– providing externally visible output (λ-function Nxtout)

MealyFsm (in, out, Nxtctl, Nxtout) =

control := Nxtctl(control,in)
out := Nxtout(control,in)

© Egon Börger: ASM Method 3

Extend FSMs to VMs by general notion of data/data change

memory: set of abstract updatable locations l(a1,…,an)
• containing values of whatever type: objs, sets, fcts,…
• updatable via assignments loc:= val (updates)

grouping of data (“modular memory structure”)
• into tables: association of a value to each entry l(a1,…,an)

– also called interpretation of an array (function or predicate)

• into states: sets of tables
– also called (Tarski) structure of given signature

state change by updating some locations
• i.e. using guarded updates via transition rules of form

If cond then Updates

© Egon Börger: ASM Method 4

Abstract State Machines (mathematical VMs)

• state an arbitrary structure (Tarski)
• state transformation by simultaneous execution of

finitely many rules of form
– array updates f(s,…):=t (function updates)
– if cond then rule (guarding)
– choose x with P(x) in rule (non-determinism)
– forall x with P(x) do rule (parallelism)
– let x=t in rule (common notational shorthands)

i

cond1

condn

…

rule1

rulen

j1

jn

control state ASM with rules
if control=i and cond
then control:=j

rule

© Egon Börger: ASM Method 5

Example: Control State FSM/ASM for Lift

halting moving
L.floor:=L.floor +/-1

L.attracted(L.dir)

not L.canContinue (L.dir)

L.cancelRequest
(L.floor,L.dir)

DEPART

C
H
A
N
G
E

C
O
N
T
I
N
U
E

STOP

L.dir:=L.dir’
L.cancelRequest

(L.floor,L.dir’)

not L.attracted (L.dir)
& L.attracted (L.dir’) L.canContinue (L.dir)

L.floor:=L.floor +/-1

See AsmBook 2.3

agent L = self

© Egon Börger: ASM Method 6

What are ASMs good for?

Basis for rigorous system development method
which allows one to effectively

couple specification & detailed design
• by constructing

– accurate ground models (blueprints) at the
appropriate level of rigour (LNCS 452 & 2772)

– linked seamlessly to executable code via
systematic stepwise refinement of models

(LNCS 452 & J.FAC 2003)

• in a way the practitioner can verify & validate
by reasoning & experimentation at the appropriate
degree of detail

© Egon Börger: ASM Method 7

ASMs support major activities in sw lifecycle (1)

• requirements capture by constructing satisfactory
ground models, i.e. accurate high-level system
blueprints, serving as precise contract and
formulated in a language which is understood by all
stakeholders

• detailed design by stepwise refinement, bridging
the gap between specification and code design by
piecemeal, systematically documented detailing of
abstract models down to executable code,
modularizing orthogonal design decisions (“design
for change”)

© Egon Börger: ASM Method 8

ASMs support major activities in sw lifecycle (2)

– validation of models by their simulation
• based upon the mathematical notion of ASM run, which is

supported by numerous tools to execute ASMs:
– ASM Workbench (ML-based, DelCastillo 2000)
– AsmGofer (Gofer-based, Schmid 1999)
– XASM (C-based, Anlauff 2001)
– AsmL (.NET-based, MSR/FSE 2001)

– verification of model properties by techniques for
proving or refuting (counterexample construction)

• whether “by head” or tool supported
– e.g. by KIV, PVS, Isabelle, AsmPTP, model checkers

– documentation for inspection, reuse and maintenance
• by providing, through analysis of ground and intermediate models,

explicit descriptions of the software structure and of the major
design decisions

© Egon Börger: ASM Method 9

ASM Method: Seamlessly from Specs via Design to Code

© Egon Börger: ASM Method 10

Major applications of ASMs

– industrial standards: OASIS BPEL4WS, ECMA/ISO C#, ITU-T SDL-2000,
IEEE VHDL93, ISO Prolog

– programmming languages: all major real-life languages, e.g. SystemC,
Java/JVM bytecode, domain-specific languages (at Swiss Union Bank)

– architectural design: verification, e.g. of pipelining & VHDL-based hw
design (Schmid at Siemens), architecture/compiler co-exploration
(Teich Paderborn/Erlangen)

– reengineering and design of industrial control systems: Falko project &
mobile telephony network components (Siemens), debugger
specification & UPnP (Microsoft)

– protocols: authentication, cryptography, cache-coherence, routing-
layers for distributed mobile ad hoc networks, group-membership

– compilation: verification of comp.schemes/compiler back-ends
– modeling e-commerce and web services
– simulation & testing: fire detection system in coal mines, simulation of

railway scenarios (Siemens), implementation of behavioral interface
specs on .NET platform & conformence test of COM components
(Microsoft), compiler testing

© Egon Börger: ASM Method 11

ASM Method: Separation of Different Concerns
• Separating orthogonal design decisions

– supported by combining abstract operational
descriptions of system dynamics with declarative
(e.g. functional or axiomatic) definitions of statics

• to keep design space open (specify for change: avoiding
premature design decisions & documenting design decisions to
enhance maintenance)

• to structure design space (rigorous interfaces for system
(de)composition, laying the ground for the system architecture)

• Separating design from analysis (defn from proof)

– validation (by simulation) from verification (by reasoning)

– verification levels (degrees of detail)
– reasoning for human inspection (design justification)
– rule based reasoning systems

» interactive systems
» automatic tools: model checkers, automatic thm provers

• Linking system levels by abstraction and refinement

See E.B. in
FDL2003

© Egon Börger: ASM Method 12

ASM method: 3 constituents

• notion of ASM
– Y.Gurevich 1984-1995, in particular “Lipari Guide” 1995

• ground model technique
– See E.Börger: The ASM ground model method as a foundation of

requirements engineering, LNCS 2772 (2003) 145-160. See also
LNCS 452

• ASM refinement technique
– See E.Börger: The ASM refinement method, Formal Aspects of

Computing 15 (2003) 237-257. See also LNCS 452
• to be combined with appropriate methods of

– ASM validation
– ASM verification

© Egon Börger: ASM Method 13

ASM notion: rigorous semantics
for truly abstract (pseudo-) “code”

• Semantics of guarded function updates:
if cond then … f (t1,…,tn):=t …

• In the current state (structure) S:
– determine all the fireable rules (s.t. cond is true in S)

– compute all update expressions ti,t
– execute simultaneously all the assignments

• The updating yields the next state S’

For a formalization by deduction rules see AsmBook

© Egon Börger: ASM Method 14

Semantics of ASM (cont’d): choose/forall rules

• Semantics of choose x satisfying cond
R

in the current state S:
– select an element e which satisfies cond in S

– execute R(e) in S to yield next state S’

• Semantics of forall x satisfying cond
R

in the current state S, execute simultaneously R(e)
for each e satisfying cond in S to yield next state S’

© Egon Börger: ASM Method 15

Componentization via Classification of Locs/Fcts

• Static: values independent on states of M
• Dynamic: values depend on states of M

– in (monitored) : only read (not updated) by M,
written only by environment of M Exl: sensors

– out: only written (not read) by M, only read (not
written) by environment Exl: actuators

– controlled: read and written by M
– shared: read and written by M and by environment

(protocol needed for consistency of updates)

• Derived: values computed by a fixed scheme
from monitored/static fcts

© Egon Börger: ASM Method 16

What ground models provide for requirements

code

design
3. Makes requirements traceable

by relating them to design

Informal
requirems

Ground
Model

1.

1. Requirements capture
documenting relevant application
domain knowledge for designer

2.2. Requirements inspection makes
correct/completeness checkable for
user/customer (no infinite regress)

• Verification of properties
• Validation: mental/machine simulation

(of user scenarios or components)
supported by operational nature of model

4. Provides test plan basis
testing

See E.B. LNCS 2772

© Egon Börger: ASM Method 17

Main purpose of FALKO: Construct & validate timetables for

tram/sub-/railway lines (system of 300 K loc)

• Timetables constructed offline from raw data which

– can be input manually via a GUI

– can be read in from files written in established formats

• Validation done by simulation

– 3 main components + 1 hidden discrete event simulation
kernel controlling the simulation

• Defective component implementing the railway process

reengineered using ASMs (modeled and designed)

– integrating an existing library for numerical computations
(computing train velocities, trip times etc.) designed and
hand coded conventionally

Ground Model Exl: Falko Project (Siemens 3‘98-5’99)

Slides courtesy of Peter Päppinghaus

© Egon Börger: ASM Method 18

Total Effort for Railway Process Model: 66 pw (person weeks)

• Ground Model Construction (High-Level Design)
– Requirement eliciation and specification based on predecessor system, developed in meetings of the design

team, documented by minutes of the meetings (4 persons 2 weeks)
– Design of 1st draft of executable ASM model (1 person 8 weeks)
– Several cycles of testing and debugging using the ASM Workbench (developed by Giuseppe Del Castillo as

part of his Doctoral Thesis at University of Paderborn) (1 person 8 weeks + 1 person 11 weeks)
– Review of 2nd draft of ASM model by design team plus external reviewers (6 persons 1 week)
– Several cycles of improving, testing and debugging (2 persons 5 weeks)

• Implementation
– Development of ASM-SL to C++ Code Generator (developed by Joachim Schmid as part of his Doctoral

Thesis at University of Ulm, 1 person 4 weeks)
– Specification and implementation of additional handwritten C++ code (1 person 2 weeks)
– Integration of FALKO system including testing and debugging (3 persons 3 weeks)
– Documentation of railway process model component (as collection of HTML documents with literate

programming features, linked to ASM Workbench) and final polish (1 person 6 weeks)

Comparison: ca. 110% of estimated total effort for conventional software design

The FALKO Project: ASM Effort

© Egon Börger: ASM Method 19

ASM Ground Model (source of C++ code generation)

• ca. 3 000 lines of ASM Workbench code

• 120 rules

• 315 functions and relations (240 functions, 75 relations)
– 71 dynamic

– 69 external

– 59 static

– 116 derived

C++ Code
• ca. 9 000 lines of generated C++ Code

• ca. 2 900 additional lines of handwritten C++ Code, consisting of
–ca. 400 lines wrapper code for interfacing to other components of FALKO

–ca. 2 500 lines low-level library code

• Railway process model of prototypical predecessor system:

ca. 20 000 lines of (handwritten) C++ code

Size of ASM Ground Model and C++ Code for Railway Process Model

© Egon Börger: ASM Method 20

• Ground Model Construction (High-Level Design)

– Developers and reviewers had no problems to understand the formal specification (ASM model)

– Tests with ASM model uncovered, at an early stage, bugs also in other components of the package

• Implementation

– Coherence of specification and implementation by seamless tool support

– Performance loss of generated code tolerable even for product quality code

• Maintenance

– 4 installations at Subway Vienna Operator since March 1999, 1 in daily use

– Customer reported no bugs so far

– 2 bugs discovered in tests run by FALKO developers, temporary fixes for the 2 bugs (by handhacking the

generated C++ code) later replaced by recompiling updated ASM model

• Development Environment built-up, supporting seamless flow from spec to code

Falko Experience in Use of ASMs for Software Design

© Egon Börger: ASM Method 21

• Egon Börger, Peter Päppinghaus, Joachim Schmid: Report on a
Practical Application of ASMs in Software Design

• In: Y. Gurevich et al.(Eds.): Abstract State Machines. Theory and Applications.

Springer LNCS 1912, 2002, 361-366

• Giuseppe Del Castillo: The ASM Workbench. A Tool
Environment for Computer-Aided Analysis and Validation of
Abstract State Machine Models

• Dissertation, Heinz Nixdorf Institut, Universität Paderborn, 2001, pp.iv + 212,

ISBN 3 - 9311 466 – 82 – 5

• J. Schmid: Compiling Abstract State Machines to C.

– In: Journal of Universal Computer Science 7 (11), 2001, 1069-1088

References to Falko Project

© Egon Börger: ASM Method 22

Exl: High-Level Debugger Model (MS/MSR 2000)

Break Run

onBreakingCommand
onRunningCommand

onStoppingEvent

OnNonStoppingEvent

TryToBreak

onEmptyEventQueue

Init

onExit

onStart

onStart = if command == “dbg” then startdbg
onExit = if command == “Exit” then stopdbg

where startdbg= stopdbg=skip

Slide courtesy
M. Barnett, M. Veanes

© Egon Börger: ASM Method 23

Break Run

TryToBreakInit

Experimenting user scenarios with ASM model

start

Break

Init

b hello.cpp:13

Break

run hello.exe

Break
Created process
.
.
Loaded module
Created 1st thread

RunRunRunRunRunRun

False
TryToBreak

Break

TryToBreak continue

Break Run

Hit breakpoint

Run

TryToBreak

False

TryToBreak

Run

Loaded Class

Run

True

User Environment Events in
queue

Test of the Control Model showing an
undesired behavior (which then

was found to have been fixed at the
same time also in the C++ code)

After non-stopping class loading event in
Run mode, Break mode is unreachable

although breakpoint was reached

Row t exhibits state after
t-th step of control model

© Egon Börger: ASM Method 24

ASM model for debugger: revised

onNonEmptyEventQueue

RunQ
onAnyEvent

Break Run

onBreakingCommand
onRunningCommand

onStoppingEvent

OnNonStoppingEvent

TryToBreak

onEmptyEventQueue

Init

onExit

onStart

See Proc. ASM2000 in LNCS 1912

© Egon Börger: ASM Method 25

Scheme for Correct ASM Refinement/Abstraction Step

State
τ1 …τm State’

≡

• relating the locations of interest
• in states of interest
• reached by comp segments of interest

≡ defined

RefState RefState’
σ1 …σn

ref absabs ref

Supports design communication, reuse, system documentation and maintenance

See E.B. in Formal Aspects of Computing 2003

© Egon Börger: ASM Method 26

Defining correctness of a refinement M* of M

• Fix any notions ≡ of equivalence of states & of initial/final states
• Idea of correctness: refined runs simulate abstract ones

• Definition. M* is a correct refinement of M iff
every (infinite) refined run simulates an (infinite)
abstract run with equivalent corresponding states
– i.e. for each M*-run S*(0), S*(1),… there is an M-run

S(0), S(1),… , either both terminating or both
infinite, with infinite sequences i0< i1<…, j0< j1<…
such that S(ik) ≡ S*(jk) for each k, including the initial
states (i0 = j0 =0) and the final ones (if any)

• Wlog at final states, the state sequence becomes constant
i.e. S(r) = S(r+k) for each final S(r) and each k, same for S*

© Egon Börger: ASM Method 27

Completeness condition for ASM refinements

• Completeness idea: abstract runs are simulated by
(correspond to) refined ones, symmetrically to how for
correctness refined runs simulate abstract ones

• Def. M* is a complete refinement of M
iff M is a correct refinement of M*

• Related concepts/terminology:
– “preservation of partial correctness” for correct refinement (wrt

terminating runs)
– “preservation of total correctness” for complete refinement (adding to

the correctness condition for terminating runs that every infinite refined
run admits an infinite abstract run with an equivalent initial state)

– “bisimulation” or “interpreter equivalence” for correct and complete
refinement (wrt terminating runs considering only the input/output
behavior)

© Egon Börger: ASM Method 28

FETCH

Operand

Fetch

Mem
Addr

Jump
Branch

AluJumps IAR
I2S

IAR
S2I

OPERAND

Alu
Set

IAR
S2I

Load
Store

IAR
I2S

WRITEBACK

ALU

Write
Back

C←←←←IAR

IF

ID

EX

MEM

WB

Pipelining Stages DLXseq

IAR←←←←A

Jump
LinkTrapBranch

JUMP
LINK

Link C←←←←PC

BRANCH TRAP

no

Store

STORE

LOADSubwordSUB
WORD

yes

Store

MEMADDR

MDR←←←←B

PassBtoMDR

Mem
Acc

no

© Egon Börger: ASM Method 29

FETCH

WRITEBACK

IF

ID

EX

MEM

WB

Pipelining Stages DLXpar Rules

ALU MOVI2SMEMADDR PassBtoMDR

JUMP
LINK

LINKBRANCH TRAP Preserve1

MOVS2I

OPERAND Preserve

STORELOAD Preserve2

• The problem: how to
guarantee that no
conflicts arise when
an instruction exec
uses data which have
to be computed by a
preceding instruction
whose pipelined
execution is not yet
terminated

• Ideally all rules fire
simultaneously
• one per instruction in its

successive stages

Verified stepwise refinement see LNCS 1212

© Egon Börger: ASM Method 30

To-be-Refined Debugger Model

onNonEmptyEventQueue

RunQ
onAnyEvent

Break Run

onBreakingCommand
onRunningCommand

onStoppingEvent

OnNonStoppingEvent

TryToBreak

onEmptyEventQueue

Init

onExit

onStart

© Egon Börger: ASM Method 31

debugger

Init

initializeCOM

Sequential submachine refinement of machine onStart
into a sequence of three submachines

createNewShell

Break

setDbgCallback

env

���

Process=Null
Thread =Null
Frame =Null

…
BPs ={}

Shell

dbg services

callbacks

Break

initializeCOM createNewShell setDbgCallback

Submachine Concept: Proc. ASM2000 in LNCS 1862

© Egon Börger: ASM Method 32

More Exls for Design & Verification of ASM Hierarchies
Control Systems: Production Cell (model checked, refinement to C++
code:JUCS 1997), Steam Boiler (refinement to C++ code, LNCS 1165), Light
Control (executable requirements model, JUCS 2000)

Compiler correctness
ISO Prolog to WAM: 12 refinement steps, KIV verified

reflecting backtracking, structure of predicates, structure of clauses,
structure of terms & substitution, optimizations.

reused for PROTOS-L (poly types) and CLP (R) (constraints) (FAC ‘96)
Occam to Transputer :15 models (Computer Journal ‘96)

exhibiting channels, sequentialization of parallel procedures, pgm ctrl
structure, env, transputer datapath and workspace, relocatable code
(relative instr addresses & resolving labels)

Java to JVM: language and security driven decomposition (Jbook)
horizontal sublanguage levels (reused for C#)

imperative, modules, oo, exceptions, concurrency (delegates, unsafe)
vertical JVM levels (modular compositional structuring)

trustful execution, defensive run time checks, diligent link time checks,
loading

© Egon Börger: ASM Method 33

Looking for invariants to prove ASM refinement correctness

• Idea: find commuting diagrams with end points s, s*

which satisfy an invariant ≈ implying the to be
established equivalence ≡

• Realization: for each pair of corresponding states -
not both final - satisfying ≈, follow the two runs to find
a successor pair s’, s*’ (of corresponding states
satisfying ≈)

• Two cases are possible for such run extensions:
– only one of the two runs can be extended

• the abstract one, producing an (m,0)-diagram
• the refined one, producing a (0,n)-diagram

– both runs can be extended

© Egon Börger: ASM Method 34

Extending runs by triangles and trapezoids

s’. . .

s*’. . .

s*’. . .

s’. . .

≈

s

s*

≈(m,0)-triangle: compute segment
leading in m>0 steps to an s’≈s*

s

s*

≈(0,n)-triangle: compute segment
leading in n>0 steps to an s*’≈s

s

s*

≈

(m,n)-trapezoid:
compute segment leading

in m>0 steps to an s’
in n>0 steps to an s*’

such that s’≈s*’
where m>n or m=n or m<n

© Egon Börger: ASM Method 35

Definition of the forward simulation condition FSC(s,s*)

If s ≈ s* and not both s,s* are final states, then
• either the abstract run can be extended

by an (m,0)-triangle
leading in m>0 steps to an s’≈s* with (s’,s*) <m0 (s,s*)

• or the refined run can be extended
by a (0,n)-triangle
leading in n>0 steps to an s*’≈s with (s,s*’) <0n (s,s*)

• or both runs can be extended
by an (m,n)-trapezoid leading

in m>0 abstract steps to an s’

in n>0 refined steps to an s*’
such that s’≈s*’

NB. A minor modification covers also nondeterministic ASMs

applying triangles
successively

must be well-founded

© Egon Börger: ASM Method 36

Schellhorn’s coupling invariant for correct ASM refinements

Theorem. M* is a correct refinement of M
wrt an equivalence notion ≡ and a notion of initial/final states

if there is a relation ≈ such that
• the coupling invariant ≈ implies equivalence ≡
• each refined initial state s* is coupled by the

invariant to an abstract initial state s≈s*
• the forward simulation condition FSC holds for

every pair (s,s*) of abstract and refined states

This theorem constitutes the basis of:
G. Schellhorn, W. Ahrendt: The WAM Case Study: Verifying Compiler Correctness for

Prolog with KIV. In W.Bibel, P. Schmitt (Eds): Automated Deduction – A Basis for
Applications. Vol.3, Ch.3, Kluwer 1998

G. Schellhorn, W. Ahrendt: Reasoning About Abstract State Machines: The WAM
Case Study. JUCS 3 (4) 1997, 377-413

© Egon Börger: ASM Method 37

Illustrating ASM Ground Model Construction

and Provably Correct Refinements
for asynchronous ASMs

Leader Election: a distributed network algorithm
See AsmBook Ch.6.1.5. (Springer-Verlag 2003)

Compare with Petri net formalization in
W.Reisig: Elements of Distributed Algorithms

Sect. 32 (Fig.32.1/2), 76 (Springer-Verlag 1998)
Compare with event-B development in:

J.-R.Abrial, D. Cansell, D. Mery: A mechanically proved and
incremental development of IEEE 1394 tree identify
protocol. Formal Aspects of Computing 14 (2003) 215-227

© Egon Börger: ASM Method 38

Defining Asynchronous Multi-Agent ASMs
• An async ASM is a family of pairs (a, ASM(a)) of

– agents a ∈ Agent (a possibly dynamic set)
– basic ASMs ASM (a)

• A run of an async ASM is a partially ordered set (M, <) of
“moves” m of its agents s.t.:
– finite history: each move has only finitely many

predecessors, i.e. {m’ | m’ < m } is finite for each m∈M
– sequentiality of agents: for each agent a ∈ Agent, his

moves {m | m∈M, a performs m} are linearly ordered by <
– coherence: each (finite) initial segment X of (M, <) has an

associated state σ (X) – think of it as the result of all moves
in X with m executed before m’ if m<m’– which for every
maximal element m∈X is the result of applying move m in
state σ(X-{m})

© Egon Börger: ASM Method 39

Leader Election: problem statement

• Goal: Design a distributed algorithm for the election
of a leader in finite connected networks of
homogeneous agents, using only communication
(message passing) between neighbor nodes.

• Assumptions:
– network nodes (agents) are connected & linearly ordered
– leader = max (Agent) wrt the linear order <

• Algorithmic Idea: every agent
– proposes to his neighbors his current leader candidate
– checks the leader proposals received from his neighbors

• upon detecting a proposal which improves his leader candidate he
improves his candidate for his next proposal

• Eventually cand=max(Agent) holds for all agents

© Egon Börger: ASM Method 40

Leader Election: Agent Signature

• Agent: set of nodes of a finite connected graph
– < linear order of Agent (external function)

• leader = max (Agent) wrt the linear order <

• Each agent equipped with:
– neighb ⊆ Agent (external function)
– cand: Agent (controlled function)

– proposals ⊆ Agent (controlled function)
– ctl_state : {proposeToNeighbors, checkProposals}

• Initially ctl_state=proposeToNeighbors, cand=self, proposals = empty

© Egon Börger: ASM Method 41

Leader Election ASM Ground Model

propose
To

Neighbors

check
Proposals

propose

proposals
improve

there are
proposals

empty proposals

no

improve by proposals
empty proposals

yes

propose ≡≡≡≡ forall n∈self.neighb insert cand to n.proposals

proposals improve ≡≡≡≡ max (proposals) > cand

improve by proposals ≡≡≡≡ cand := max (proposals)

© Egon Börger: ASM Method 42

Leader Election: Correctness property

• Proposition: In every distributed run of agents
equipped with the leader election ASM,
eventually for every agent holds:
– cand=max(Agent)
– ctl_state = checkProposals
– proposals = empty

• Proof (assuming that every enabled agent will
eventually make a move): induction on runs
and on Σ{leader - cand(n)| n ∈ Agent}
– measuring “distances” of candidates from leader

© Egon Börger: ASM Method 43

Refining Leader Election: compute minimal path to leader

• Goal: refine the leader election algorithm to
compute for each agent also a shortest path to the
leader, providing
– a neighbor (except for leader) which is closest to the

leader
– the minimal distance to the leader

• Idea: enrich cand and proposals by a neighbor with
minimal distance to the leader candidate
– nearNeighb: Agent
– distance: Distance (e.g. = Nat ∪{∞})

– proposals ⊆ Agent x Agent x Distance

• Initially nearNeighbor = self distance = ∞ (0 for leader)
NB. This is a typical example of a pure data refinement

© Egon Börger: ASM Method 44

ASM Computing Minimal Path To Leader

propose
To

Neighbors

check
Proposalspropose

proposals
improve

there are
proposals

empty proposals

no

improve by proposals
empty proposals

yes

improve by proposals ≡≡≡≡
cand := Max (proposals)

update PathInfo to Max (proposals)

propose ≡≡≡≡ forall n ∈ neighb insert (cand, nearNeighb, distance) to proposals(n)

proposals improve ≡≡≡≡ let m = Max (proposals) in m > cand
or (m=cand and minDistance(proposalsFor m)+1 < distance)

Max taken
over agents

update PathInfo to m ≡≡≡≡
choose (n,d) with (m,n,d) ∈ proposals

d=minDistance(proposalsFor m) in
nearNeighb := n
distance := d+1

© Egon Börger: ASM Method 45

Minimal Path Computation: Correctness

• Proposition: In every distributed run of agents
equipped with the ASM computing a minimal path to
the leader, eventually for every agent holds:
– cand=max(Agent)=leader
– distance=minimal distance of a path from agent to leader
– nearNeighbor = a neighbor of agent on a minimal path to

the leader (except for leader where nearNeighbor=leader)
– ctl_state = checkProposals
– proposals = empty

• Proof (assuming that every enabled agent will
eventually make a move): induction on runs and on
Σ{leader - cand(n)| n ∈ Agent} with side induction on
the minimal distances in proposalsFor
Max(proposals)

© Egon Börger: ASM Method 46

Exercises

• Refine the CHECK submachine of the leader
election ASM by a machine which checks
proposals elementwise. Prove that the refinement
is correct.
– Hint: See Reisig op.cit. Fig.32.1

• Adapt the ASM for the election of a maximal leader
and for computing a minimal path wrt a partial order
≤ instead of a total order.

• Reuse the leader election ASM to define an
algorithm which, given the leader, computes for
each agent the distance (length of a shortest path)
to the leader and a neighbor where to start a
shortest path to the leader.
– Hint: See Reisig op.cit. Fig.32.2

© Egon Börger: ASM Method 47

References

J.-R.Abrial: Discrete System Models.
Manuscript, September 2004 (Version 2)

J.-R.Abrial: Event Driven Distributed Program
Construction.

Manuscript, August 2004 (Version 6)

Relating Event-B Models to ASMs

© Egon Börger: ASM Method 48

Event-B Models as ASMs: states, events, invariants
• States: structures of given signature with

– static part (“context”):
• sets s (“universes”), constants c, properties(c,s) (“axioms”)

– dynamic part: variables v and env (viewed as another model)
• “Inputting is done by non-determinacy”

– initialization (via a special event with guard true)
• Events of form If guard Then action

– guard: closed fst-order set theory formula with =
– action: one of the three forms

• Updates
– read: simultaneous substitution v1,…,vn := e1,…,en (v)

• skip
• choose x with P(x,v) in Updates

– where Updates = v1,…,vn := e1,…,en (x,v)

• Invariant: property holding in every state which is
reachable from initial state

© Egon Börger: ASM Method 49

Event-B Models as ASMs: rule normal form

• Normal form Rule1 or … or Rulen with Rulei of form
– if cond then choose x with P(x) in Updates

• possible cases: P = true or Updates = ∅ (skip)

• NB. R or S = (choose X∈{R,S} in X)
– no two events can occur simultaneously. Also distributed

event-B models are based on this interleaving view.
– splitting into events implies some non-deterministic

scheduling of events with overlapping guards
– no parallel update allowed for the same variable
– no rules of form: forall x with P(x) do rule
– external choose only on rules (interleaving model), no

further nesting of choices allowed in Updates

© Egon Börger: ASM Method 50

Event-B Models as ASMs: Refinement Notion

• only (1,n) refinements with n>0 satisfying:
– in a refinement F1,…, Fn,F of E, each Fi is supposed to refine SKIP
– the new events Fi do not diverge
– if the refinement deadlocks, then the abstraction deadlocks

• Variables in abstract & refined model are pairwise different
• no (1,0) refinement (“each abstract event must be refined by at

least one refined event”)
• no (n,m) refinement with n≠1

• observables = locations of interest (“projections of state
variables”), here: variables which are
– fresh (for state vars and for invariants)
– modifiable only by “observer event” a:=A(v)
– dependent only on state variables v
– abstract observables A(v) can be “reconstructed” from refined ones by an

equation A(v)=L(B(w)) (“invariant gluing the abstract observables to the
refined ones”)

© Egon Börger: ASM Method 51

E. Börger, R. Stärk

Abstract State Machines
A Method for High-Level System Design and Analysis

Springer-Verlag 2003. See http://www.di.unipi.it/AsmBook

R. Stärk, J. Schmid, E. Börger

Java and the Java Virtual Machine
Definition, Verification, Validation

Springer-Verlag 2001. See http://www.inf.ethz.ch/~jbook

For papers see http://www.di.unipi.it/~boerger

References

